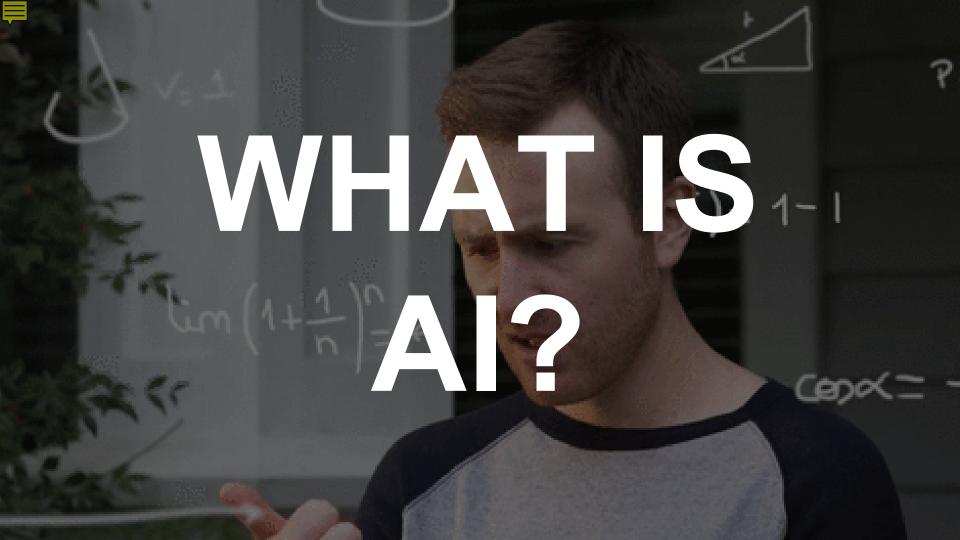
BEYOND THE HYPE

Unraveling the Myths, Realities, & Governance of Artificial Intelligence


Brandie Nonnecke, PhD Director, CITRIS Policy Lab Assoc. Research Professor, Goldman School of Public Policy UC Berkeley @BNonnecke | nonnecke@berkeley.edu

CITRIS BANATAO BINSTITUTE

CITRIS POLICY LAB

Popular on Netflix

Spanish-Language Movies & TV

TV Dramas

States And Andrew Design

AI LEGISLATION DATABASE (FEDERAL & CA)

AI Le	gislation			
\equiv Vi	ews 🖽 Grid view 🕸 🗸 💩 1	hidden field	Sorted by 1 field I	Q
	Title ~	Introduced By	Co-Sponsors ~	Party Affiliation of
1	H.Res.66: Expressing support for C	Rep. Ted Lieu (D-CA-36)		Democrat
2	H.R.206: Healthy Technology Act o	Rep. David Schweikert (R-AZ-6)		Republican
3	S.5339: Platform Accountability an	Sen. Christopher Coons (D-DE)	Sen. Rob Portman (R-OH) Sen. Amy Klobuchar (D-MN) Sen.	Democrat
4	S.5351: Stopping Unlawful Negativ	Sen. Rob Portman (R-OH)		Republican
5	H.R.9659: Building Technologies R	Rep. Eddie Bernice Johnson (D-TX-30)		Democrat
6	H.R.9631: Preventing Deepfakes of	Rep. Joseph Morelle (D-NY-25)		Democrat
7	H.Res.1512: Providing for the conc	Rep. Adam Smith (D-WA-9)		Democrat
8	H.R.9376: National Drone and Adv	Rep. Frank Lucas (R-OK-3)	Rep. Stephanie Bice (R-OK-5) Rep. Brian Babin (R-TX-36) R	Republican
9	H.R.9351: NRC Survey Act	Rep. Byron Donalds (R-FL-19)	Rep. Charles Fleischmann (R-TN-3) Rep. Troy Nehls (R-TX-22)	Republican
10	H.R.9262: To make improvements t	Rep. Stephanie Bice (R-OK-5)	Rep. Rick Larsen (D-WA-2)	Republican
11	H.Res.1399: Expressing support fo	Rep. Darrell Issa (R-CA-50)	Rep. Suzan DelBene (D-WA-1) Rep. Yvette Clarke (D-NY-9)	Republican
285 reco	C 4010: Destantion the Destantion from	Constant I and dear (D. OV)	Can Womber Classes (D. 47)	Descibling
P Airt	able		🗇 Copy base 🖉	View larger version

CITRISPolicyLab.org/AILegislation

AI DEFINED BY LAWS & INSTITUTIONS

National Al Initiative Act of 2020

AI is "a machine-based system that can, for a given set of human-defined objectives, make predictions, recommendations or decisions influencing real or virtual environments."

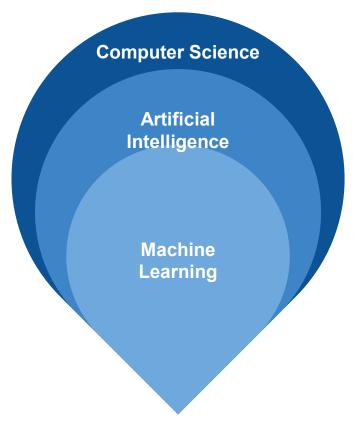
NIST AI Risk Management Framework

An AI system is an "engineered or machine-based system that can, for a given set of objectives, generate outputs such as predictions, recommendations, or decisions influencing real or virtual environments (based off of OECD recommendation on AI: 2019; ISO/IEC 22989:2022)

AI DEFINED BY LAWS & INSTITUTIONS

EU AI Act (Article 3)

An AI system means a system that is designed to operate with elements of autonomy and that, based on machine and/or human-provided data and inputs, infers how to achieve a given set of objectives using machine learning and/or logic- and knowledge based approaches, and produces system-generated outputs such as content (generative AI systems), predictions, recommendations or decisions, influencing the environments with which the AI system interacts



AI DEFINED BY COMPUTER SCIENCE

Al refers to the ability of machines to respond to stimulation and make decisions that normally require a human level of expertise (Shubhendu & Vijay, 2013).

Machine learning (ML), the most commonly used form of AI, refers to a broad set of techniques that use data to create algorithms that are often used to predict outcomes.

- Supervised vs. Unsupervised ML
- Deep Learning
- Reinforcement Learning

MACHINE LEARNING

Supervised Machine Learning **Unsupervised Machine Learning Reinforcement Learning Deep Learning Generative Al Foundation Models General-Purpose Al**

MACHINE LEARNING

Statistical pattern recognition or correlations in data

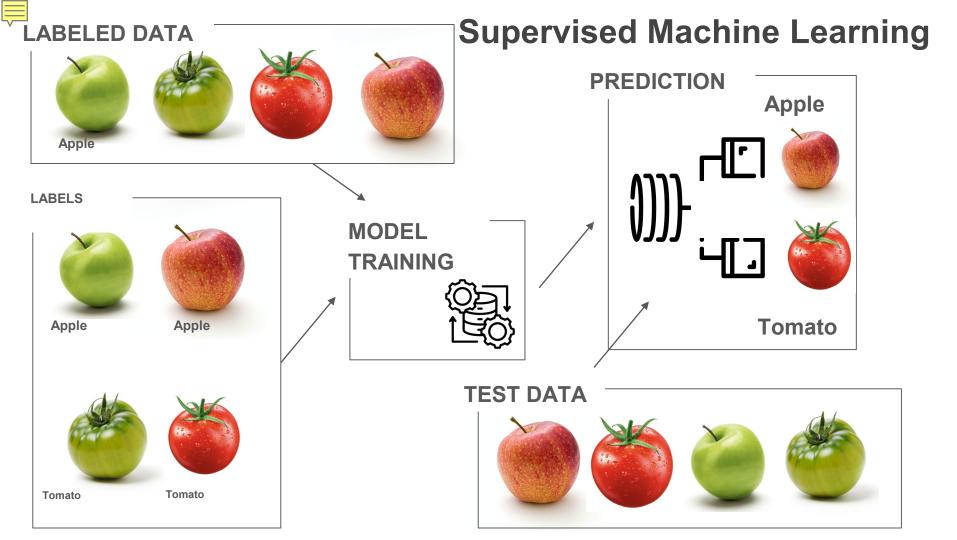
1. Supervised Machine Learning

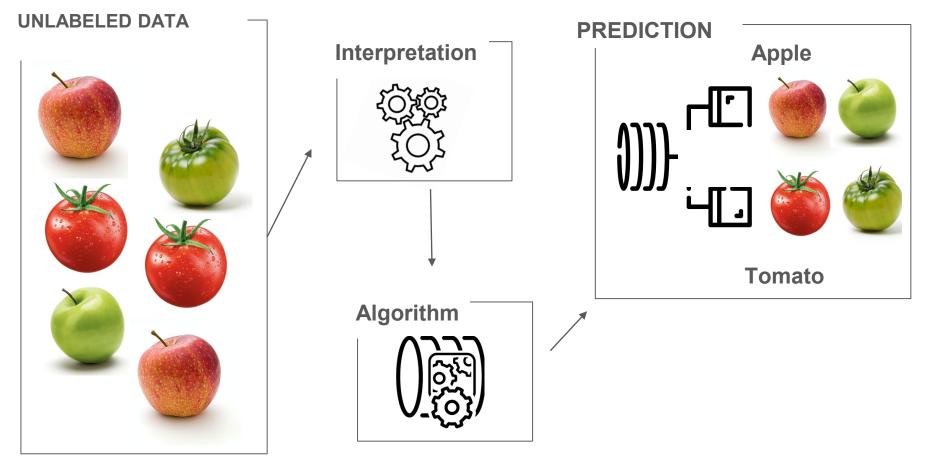
- Labeled datasets used to train algorithms that analyze and cluster data or predict outcomes.

2. Unsupervised Machine Learning

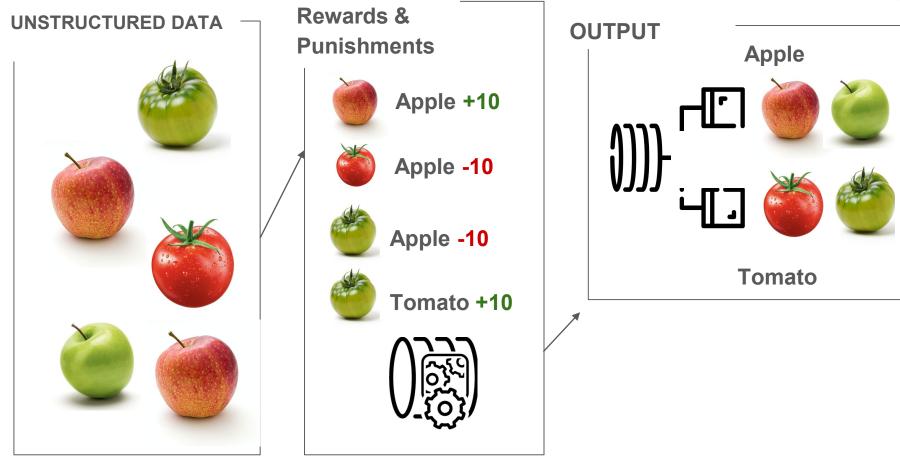
- Algorithms analyze and cluster unlabeled datasets, discover patterns.
- 3. Reinforcement Learning
 - Algorithms that learn through trial and error using feedback from its actions

ROUND **STEM** RED


ROUND 🔗 STEM 📈 RED X



ROUND 🔗 STEM RED 📈



Unsupervised Machine Learning

Reinforcement Learning

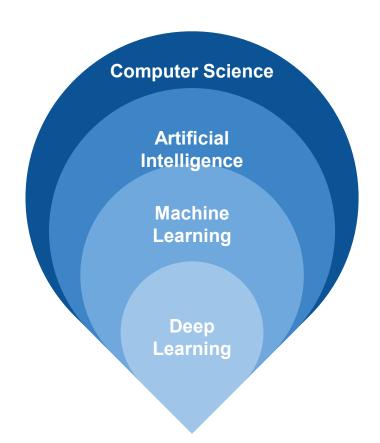
CHALLENGES: MACHINE LEARNING

1. Supervised Machine Learning

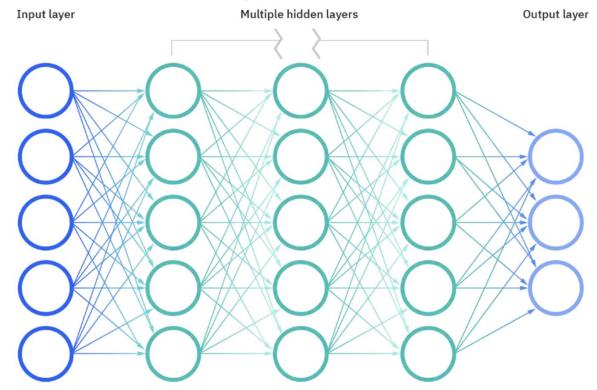
- Can require certain levels of expertise to structure accurately
- Training supervised learning models can be very time intensive
- Datasets can have a higher likelihood of human error, resulting in algorithms learning incorrectly

2. Unsupervised Machine Learning

- Computational complexity due to a high volume of training data
- Higher risk of inaccurate results
- Lack of transparency into the basis on which data were clustered


3. Reinforcement Learning

- All of the Above &...
- Faulty reward functions create unintended behaviors


DEEP LEARNING

- Concept around since 1950s (Frank Rosenblatt)
- A subset of machine learning
- More complex
- Mimics the human brain (i.e., how neurons fire in brain)
- Ingest & process unstructured data
- Automates feature extraction (e.g., dog ears vs. cat ears)
- Classify and cluster data

Deep neural network

Source: https://www.ibm.com/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks/

CHALLENGES: DEEP LEARNING

- Large amounts of data
- Powerful computing
- Lack of transparency
- Faulty reward functions create unintended behaviors

GENERATIVE AI

Deep learning models that can generate high-quality text, images, audio, and other content based on the data they were trained on.

Midjourney Bard CHATGPT

FOUNDATION MODELS

Al systems with broad capabilities that can be adapted to a range of different, more specific purposes.

The original model provides a "foundation" on which other things are built

The large language model GPT-4 is the foundation model of ChatGPT

AI GOVERNANCE



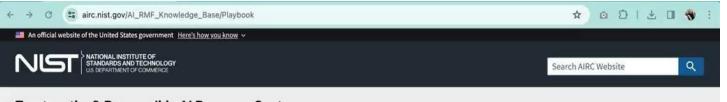
US Federal AI Landscape

- 2019 United States adopts OECD Principles on Artificial Intelligence Executive Order "Maintaining American Leadership in Al" (2019) -2020 Al in Government Act of 2020 Executive Order "Promoting the Use of Trustworthy AI in the Federal Government (2020) -2021 National AI Initiative Act of 2020 (became law in January 2021) -National AI Initiative Office (housed within White House OSTP) -2022 National AI Advisory Committee 2023 NIST AI Risk Management Framework -AI Bill of Rights -
 - White House Voluntary AI Commitments
 - Sens. Blumenthal & Hawley introduce framework to guide AI governance and subsequent bills
 - Sen. Schumer's AI Summit & "Safe Innovation Framework for AI Policy"
 - White House Executive Order on AI

Al Risk Management Framework

UC BERKELEY

CENTER FOR LONG-TERM CYBERSECURITY



AI Risk-Management Standards Profile for General-Purpose AI Systems (GPAIS) and Foundation Models

Version 1.0, November 2023

ANTHONY M. BARRETT | JESSICA NEWMAN | BRANDIE NONNECKE | Dan Hendrycks | Evan R. Murphy | Krystal Jackson

For most portions of this document, including passages adapted from original material in Barrett et al. (2022), permissions are per CC BF 4.0 license (https://teatietecommons.og/licenseg/bj40.0). For fair-use permissions on portion of this document that include or adapt passages from NST publications, such as the AI RMF Playbook encerpts in Section 3 of this document, see fair-use provisions of the NST ficense the NST ficense through when itegapower[icense].

Trustworthy & Responsible AI Resource Center

.

Knowledge Base > Playbook

Home	
Knowledge Base	~
AIRME	~
Playbook	*
Govern	
Мар	
Measure	
Manage	
Audit Log	
FAQ	
Roadmap	
Glossary	
Technical And Policy	
Documents	
Crosswalk Documents	
Use Cases	
Engagement and Eve	nts
About the Center	

NIST AI RMF Playbook

The Playbook provides suggested actions for achieving the outcomes laid out in the <u>AI Risk Management Framework</u> (AI RMF) <u>Core (Tables 1–4 in AI RMF 1.0)</u>. Suggestions are aligned to each sub-category within the four AI RMF functions (Govern, Map, Measure, Manage).

The Playbook is neither a checklist nor set of steps to be followed in its entirety.

Playbook suggestions are voluntary. Organizations may utilize this information by borrowing as many –or as few – suggestions as apply to their industry use case or interests.

Download the NIST AI RMF Playbook

Playbook PDF Playbook CSV Playbook Excel Playbook JSON

European Union

- EU AI Act (passed)
 - Most comprehensive AI legislation globally
 - Puts in place requirements on high-risk AI systems
- Digital Services Act (passed)
- Digital Markets Act (passed)
- Data Governance Act (passed)
- EU General Data Protection Regulation (passed)
 - Article 22 "The data subject shall have the right not to be subject to a decision based solely on automated processing, including profiling, which produces legal effects concerning him or her or similarly significantly affects him or her."

AI Standards & Guidelines

Information Technology

ARTIFICIAL INTELLIGENCE

ISO/IEC JTC 1/SC 42 Artificial intelligence

IEEE ETHICS IN ACTION in Autonomous and Intelligent Systems

The Global AI Standards Repository

Third-party Auditors, Evaluators, Licensors, Certifiers

Auditors

ORCAA

Parity AI

Evaluators

Credo.ai

ARC Evals

Licensors

Responsible AI Licenses (RAIL)

Certifiers

Responsible AI Institute

CONTACT

Brandie Nonnecke, PhD Director, CITRIS Policy Lab Assoc. Research Professor, Goldman School of Public Policy nonnecke@berkeley.edu | @BNonnecke

GLOSSARY

Al Bias - Computational or statistical bias is a systematic error or deviation from the true value of a prediction that originates from a model's assumptions or the data itself. Human or cognitive bias refers to inaccurate individual judgment or distorted thinking, while systemic bias leads to systemic prejudice, favoritism, and/or discrimination in favor of or against an individual or group. Bias can impact outcomes and pose a risk to individual rights and liberties (<u>NIST, 2022</u>; <u>IAPP, 2023</u>)

Al Risks - Like risks for other types of technology, Al risks can emerge in a variety of ways and can be characterized as long- or short-term, high- or low-probability, systemic or localized, and high- or low-impact (<u>NIST AI RMF, 2023</u>)

Al Fairness - An attribute of an AI system that ensures equal and unbiased treatment of individuals or groups in its decisions and actions in a consistent, accurate manner. It means the AI system's decisions should not be affected by certain sensitive attributes like race, gender or religion (<u>IAPP, 2023</u>)

Trustworthy AI - Often used interchangeably with the terms responsible AI and ethical AI, which all refer to principle-based AI development and governance, including the principles of security, safety, transparency, explainability, accountability, privacy, nondiscrimination/non-bias, among others (<u>IAPP, 2023</u>)